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Geometric Inequalities with polynomial
2Xy + 2yz + 2zx — x?—y?—z2

-Arkady Alt 17

ABSTRACT. This paper’s aim is to explore the usage of symmetric polynomial

A(x,y,2) = 2:ry+2yz+2;x—1'2—y2—z2

in various geometric inequalities related to triangle.In particular we will show how
Af(a,b,c) ,where a, b, c define a triangle, can be used along side of R, 7, s to give a
new interpretation ((A,r,s)- form) of Hadwiger-Finsler, Blundon’s and many others
well known and new inequalities. Also we obtain the best quadratic (R, r)-minorant
for A (a,b,c) and linear (s,r)-majorant for sum of medians.

1 INTRODUCTION: NOTATIONS AND BASIC CORRELATIONS
Symmetric polynomial

A(x,y, 2) == 2zy + 2yz + 222 — 22 — y? — 22

is not a positive definite quadratic form , really:

g+r g—r
A<p+q,T, 5 )=q2—p2—7"2

And even requiring z,y, z > 0 doesn’t guarantee positivity of A (z,y, z). But
A(z,y, z) acquires a special meaning for positive z,y, z since in this case inequality
A(z,y,z) > 0 is equivalent to triangle inequalities for numbers VZ,\/¥,/Z, that is

A2,4,2) >0 <= VZ+Y> Vo I+ V> Vo, Ve +V/2 > /5
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It is interesting to note that for positive numbers a, b, ¢, inequality
A (a?,b%,¢?) > 0 characterizes a, b, ¢ as side-lengths of a triangle with area

NINCRERD)
4

side-lengths a,b,c. If A (a™,b",c?) > 0 for all natural n then a, b, ¢ represent
side-lengths of an isosceles triangle with the lateral side not less than the base [7].
Let a, b, ¢ be side-lengths of a triangle AABC and let F,s, R, and r be, respectively,
area, semiperimeter, circumradius, and inradius of AABC. Also, let r,, be exradius
corresponding to a side z € {a, b, c}. We shall add |

and inequality A (a*,b%,c*) > 0 characterizes an acute triangle with

A = A(a,b,c) = 2ab+ 2ac + 2bc — a2 — b2 — 2

to this list of triangle. characteristics.
Using these notations we can write down more representations for A = A (a, b, c) :

A=Y (2= (-0°) =2Ta(s—a) =4 X (s—a) (s ) =

cyc cyc cyc

45® =2 (a® + 0% + ) = 4 (ab + b + ca) — 452

ii Since ab + bc + ca = 52+r(4R—|—r),Zra =4R +, %a :tang, we have

cyc

A=4r(4R+r)=4r3r, :4F2tan124-.
cyce cyc
Should also be noted that A (a2, b2, c?) = 16F? = 161252,
There are many ways to define a triangle. In particular, the most common way is to
define a triangle as a triplet (a,b,c) of positive real numbers that satisfy the
Triangle Inequalities:

(TT) a+b>c,b+c>a,c+a>b(or abe<
8)

Triangle,defined in such a way will be denoted by T (a,b,¢). Let
$=s—a,y:s—b,z:s—cthena=y+z,b=z+x,c=:r+y, where

T,y,z > 0.Thus, any three positive numbers x,y, z determine a triangle
T(y+2zz+z,2+y) and we will call such a representation of a triangle T (a, b,c) a
free parametrization, because the numbers Z,¥y,z do not depend on each other. In
that case A = A (a,b,c) = Aly+z,z+z,0+y)=4(zy +yz + 22).

Let F(R,r,s) :=4R (R~ 2r)> — (s — 2R? — 10Rr + 7'2)2. Note note that three
positive numbers R, r, s define a triangle with circumradius R, inradius r and
semiperimeter s if and only if the Fundamental Geometric Inequality

(FGI) F(R,r,s) > 0 holds ([1,p.4,inequality(12) ] or [2,p.54,Theorem 2 D.

This inequality is most commonly used in the form .

2R? +10Rr — 12 —2(R—-2r)/R(R—2r) < s> <

<2R?+10Rr —r*+2(R —2r) \/R(R - 27).
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Since A=4r(4R+r) <= R= A;—Mz then three positive numbers A, r and
s determine some triangle T (a, b, ¢) with inradius r, semiperimeter s and
A=Afa,b,c) if and only if

F %,r, $) 20 <= T2r’s*A 4 52A% — A% > 167252 (272 + 452)..
In general, any inequality in the form G (R, r,s) > 0 is equivalent to its

A —4r?
(A,r, s)-form, obtained by replacing R with —T, namely to inequality

A 42 167
—4r
g e " s) > 0.
For example, (A, r, s)-form of inequalities

Ir(AR+r)<s?2r <R,sV/3<4R+r
are, respectively,

3A < 45?3612 < A,4/3rs < A.
Remark 1. Note that inequality 4y/3rs < A is a (Ayr,s) — form of
Hadwiger-Finsler Inequality

4/3F +(a—-b)°+(b—c)’+(c—a)® <a?+b2+c2 (HF)

Thus, (HF) <= 4V3F <A <= 4V3rs <A <= sV/3<4R+r.
Since 16Rr = A — 4r? then inequality 16Rr — 5r2 < s (Gerretsen) can be
rewritten in (A, r, s)-form

A <52+ 9?2 (DG)

and, using inequality 3v/3r < s, we obtain:
A< +92?2 <2 +3sr =

A < s2 +/3sr.

Since A= A(y+z,z2+z,2+y)=4(zy+yz+2zz) and r2 = ——2%
(y y) =4(zy+y ) T

using free parametrization (a,b,c) = (y + 2,z + ,z + y) ,we obtain the following
algebraic representations of Hadwiger-Finsler and Gerretsen inequalities:

(HF) <= 3-16r?s2 < A? <= zyz(z+y+2) < (xy +yz + 23)° <

Y2 (y—2)° >0

cyc

Ixyz
DG) <= 4(zy+yz+2z) < (z+y+2)°+ —F— = A(z,y,2) <
(DG) = 4(oy +yz +22) < 4y +2) + (@,3,2) <
9xyz
T+y+z

Iryz —d(z+y+z2)(zy+yz+z2z)+ (z+y+2)° >0
> z(z —y) (z — z) > 0(Schure Inequality).

cye
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2 7 AND 7~!— TRANSFORMATIONS

Here we will consider two triangle transformations where A plays an important role
and which will allow us to obtain new geometric inequalities and establish
equivalence of several well-known geometric inequalities.

2.1. T transformation.

Let a; =a(s—a),b; =b(s—b),c, = c(s —c). Numbers a,,b,, c, are positive and
satisfy the triangle inequalities, and therefore determine a triangle
T (ar,br,c;).Indeed, by +cr—a, =b(s —b)+c(s—c)—a(s—a) =s(b+c—a)—b>— |

b+e)’—a®+2a® 202 +c%)  a?—(b—c)
c2+a2=( o) —a’tla ( +C)=a (b=0) =2(s—=b)(s—c) and

2
cyclically we have c; +a, —b, =2(s —¢)(s—a) and a; +b, —¢c, =2(s—a) (s —b).
Let s., F;, R;, 7+ be semiperimeter, area, circumradius and inradius of the triangle
— b(s— - A
T (ar,br,cr). Then s, = als—a)+ (32 btels=c) =7 and since
b, -
Sr—ar = +—02Tﬁ = (s—b)(s —c) and the

cyclics, —b, =(s—¢c)(s—a),sr ¢, =(s—a)(s— b) we obtain

2 /K
Fr=+/s:(sr —ar)(s: —b;) (5 — ¢;) \/_ (s —a) S—b) (s— )2=F28A
4RF?
and a-br¢c; =abe(s—a)(s—c)(s—a) = Rs )
. arbrer  abes(s —a) (13 —c)(s—a) abe 2F
bt = = = - R.Z_
Also we obtain R iF. NI SR R = and

Fr _F>J/A . F 2F 2F
s= .8 5 VA VA

Such transformation of triangle T (a,b,c) we will call 7—transformation. Thus,
applying 7—transformation to triangle T (a, b, ¢) with (s, R,r) we obtain triangle

A 2F _ 2F F*/A
T (ar,br,cr ith (s7, Rr,r7)={ —,—= R, —"- d Fr = .
(a ¢r) with (s Tr) (4\/5 \/Zr>an T 25
Let Ar := A(ar,br,c;). Then A; =4r; (4R, +7,) =
8rF 8RF__ __ ZF _16rF?(4R+r) AR
VA (a,b,c) \ \/A(a,b,c) +/A(a,b,c) A(a,b,c) :

Since a-, = (a;), = a- (s —a,;) =a(s —a) (s —c) (s — a) = ar?s then triangle
T (arr,brr,crr) is similar to triangle T (a, b, ¢) with coefficient of similarity of r2s.

2.2. 7~ l-transformation.

For any triangle T (a, b,c) lets consider the triangle T (a;-1,b,-1,¢,-1), where

rb“"rcb 1_7'c+7'a To +7Tb

\/g » Or _—\/—E_v Cr-1 \/5

AQr-1 =



]
x
3

Alwbo) _4RF  2(3V3-4)rF

?
s'~
E
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Sincea—lzi< F + F ): al :a(s—a)z 27 then
T Vs\s—b s—b (s—b)(s—c)/s r/5 T8
@) = arr _ ar®’s .
=1 r'r\/§ 27‘28 A
VA 4 4

Thus, (@r-1,b,-1,c7-1) = Y (@r,br,cr) and ((ar),-1,(br),—1,(cr), 1) = (a,b,¢)

and, therefore, 77! -transformation is an inverse to 7 -transformation.
Due to similarity of triangles T (a,-1,b,-1,¢,-1) and T (a,, b,, ¢,) with coefficient

vV 2
rs F 4r\/s 2 VA VA
Theorem 1. Hadwiger-Finsler Inequality A > 41/3F is equivalent to inequality

4
A S 582.

Proof. Let inequality A > 4+/3F holds for any T (a,b,c) then, in particular, for
A (a?,0%, c? F%/A(a,b
T(ar,br,c;) we have A, > 4/3F, — ﬁa—c) > 4\/5%9 =
F2,/A (a,b,
4F?2 > 4./3. _2‘£aﬂ — % > /Afa,b,c) <= 332 > Afa,b,c).

4
Assume now that §32 > A(a,b,c) holds for any T (a,b,c). Then, in particular

4, 4 (Afa,bc)\* _ A(a?b?,2)
g2 > —. >
33, > Afar,brc;) = 3 ( 1 > 7 —
A%(a,b,¢) > 3A (a2,b?,¢?) <= AZ%(a,b,c) > 3-16F2 <= A > 4/3F.

Thus, for any triangle T (a, b, ¢) holds inequality 4v/3rs < A < gsz

>

4
Remark 2. Of course inequality A < 552 can be proved without

T—transformation. Indeed, since A = 4 (ab + bc + ca) — 452

then 45% — 3A = 165% — 12 (ab + be + ca) = 4 (452 — 3 (ab + be + ca)) =

4(a® + b2 + 2 — ab — bc — ca) > 0. But the use of T—transformation gives us one
more proof of Hadwiger-Finsler inequality.

Theorem 2. Inequality AvVA < 4abc + 8 (3v/3 — 4) (s — a) (s — b) (s — ¢) holds for
any triangle T (a, b, ¢).

Proof. Applying Blundon’s inequality s < 2R + (3\/?: - 4) r to triangle T (a,, b,,¢;)

A 2F 2F
btai FS2R+(3V3—-4)r, &= —<2-R-—+4+(3V/3-4).r . 2 —
we obtain s (3v3 )r 1 N (3v3 )T N/

= AVA < dabc+8(3v3 — 4) r2s

_|_
4 ~ A VA
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AVA < dabc+8(3V3 —4) (s—a) (s —b) (s—c).

Theorem 3. In any triangle T (a,b,c¢) the following inequalities hold:
1. (a) 64F2 < A? +12r2A
(b) A% - s2A <12F?

Proof. First note that s* < 4R? + 5Rr + r2. (This inequality immediately follows
from s? < 4R? + 4Rr + 3r? and 2r < R. Or, in a free-parametrization of
T(a,b,c)=T(y+zz+z,z+y) '

. . 3 2 . R_A-4? 2 2
it is equivalent to Y 23 (z — y)° > 0).Since — =gz and 4R +5Rr +r* =
cyce T

: R A A — 4r?

R = , _ = — —_— —
(4R+r)(R+T) r(4R+r)(1+T> 2 (1+ 62 )
A (A +12r2
Ll(;?—rzthen s2 <AR? 4+ 5Rr+12 = 64F2 <A (A+12r2).

Applying 7—transformation to inequality 64F2 < A (A + 12r?) we obtain

2
2./ 2
2 Vi) ) =
A 12r?

F4 42 2
16 A§4F2 4F2 +12. rF = 5 <1+ —— = AZ_2A <12F2.
s2 A s2 A

SinceéQ—IsigF'ngt
A? — s2A < A? +1272A
12 -
A<s?+9r2<

hen

ol <= 13A < 1652 + 3672 and we have
16s% + 3612

A? 4 12A72
3 .On the other hand, inequality F? < ozt lear is

64
, _ A? A2 Ar? 2
stronger than F? < " = (HF). Indeed, A7+ 12Ar7 < A —

64 =
2 12A 2 2
A—+4-L < % = 3A% 4 36Ar2 < 4A? = 36r2 < A,
As

Theorem 4. Inequalities A < 52 4+ 9r? and F? < 64 (A — 9r2)

are equivalent.

Proof. Applying 7-transformation to inequality A < s? + 972 (a A-r-s form of

A? 4F?
Gerretsen Inequality) we get A; < s2 +9r2 = 4F? < T . — =

A

9r2 A? A3

4F? (1- )< — &= F?< —— .

( ) =16 = 64 (A —9r2)

Remark 2. Using free parametrization (a,b,¢) = (y + z,z + z,z + y) we can
3

rewrite inequality F? < 51 o7 in the form Czy:c-y2z2 (x —y) (z — z) > 0.The
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latter inequality can be obtained from Schure Inequality Y z (z — y) (x — z) > 0 by
cyc

replacing (x,y, 2) with (yz, zz,zy) .
3 (R,r)- majorants, minorants.

3.1. The family of (R, r)-linear majorant for semiperimeter s
First we will prove

Lemma 1. Let 4 and v be non-negative real numbers.
Inequality 2R% + 10Rr — 72 +2(R - 2r) /R (R — 2r) < (uR + vr)? with equality

3v3

condition of R = 2r holds if and only if 2 < pu < 5 and v = 33 — 2.

R
Proof. Necessity. Let t = — then we have inequality

224+ 10t —14+2(t—2) (t —2) < (ut +v)® which holds for any ¢ > 2 and
(pt +v)?
T2+ 106 —1+2(t—2)\/t(t—2)

2
(HH_V) <u—4=>,u22.

. _
t—*m2t2+10t—1+2(t—2)\/ t—2) -
Fort=2wehave2-22+10-2—1= (u- 2+u)2 = 27=2u+v) <

3\/"

equality occurs if t = 2. Then 1< yields

1<

2u+v=3v3 < v=3v3—2u and, therefore, VB3 —2u>0 = pu< 22

3V3

Sufficiency. Let y € . Since uR + (3v/3 — 2p) 7 = (R — 2r) + 3v/3r isn’t

Y

decreasing in p and 2R* + 10Rr —r2 + 2(R - 2r) /R (R - 2r)
< 4R? + 4Rr + 3r2 then suffice to prove

4R? + 4Rr +3r2 < (2Ru+ (3v3 — 2u) 7)° for p=2.

We have (2R + (3v/3 — 4)r)” — (4R? + 4Rr + 3r%) = 4r (3v/3 — 5) (R — 2r) > 0.
From s? < 2R% + 10Rr — 72 + 2 (R — 2r) /R (R — 2r) and the lemma above it
follows:

3v3
Corollary 1. For any 2 < p < T\/_ holds inequality s < uR+ (3v/3 —2u) .

Corollary 2. For any 2 < p, < pg < §§ we have
s< R+ (3\/§ — 2/,L1) r < usR+ (3\/§ — 2,u2) .

Proof. paR+ (3v/3 — 2u2) 7 — (uR + (3v/3 = 2u1) 7) = (2 — 1) (R — 2r) > 0.
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So, Blundon’s Inequality s < 2R + (3v3 - 4) r (that corresponds to y = 2) gives the
best (R, r) —linear majorant for s.

4 ‘ 4 4
For p = — we obtain inequality s < —ER + (3\/§— 2- ——) T & s<

V3 V3
%(4R+r) < V3s<4R+r < 4V/3F <A,

3 3 3 3
For = %ﬁ we obtain inequality s < gR and for y = 2\/§+ € [2, \2/3} we

obtain sgz\/—?}%+<3\/§_2.ﬁ2\/§+3)r < s5< (%4-1)1%_'_5\/53—672

— < —— then

2

s§2R+(3\/§~4)r§(%+1>R+

1
Inequalities s <2R + (3v3 —4)r, s < 7 (AR +71), s < %53 are well known,
23 + 3 ”
3

2v3+3 4 3
Since2<%< 3V3

5v3—6 1 3v3
3 3 = 2

but what is so special about y = that we must pay attention to it?

The answer became obvious after considering the linear (r, s) majorant for sum of
medians. But first lets look at the (r, s)-quadratic minorants for A.

3.2. Quadratic (r,s)-minorants for A

A —4r2

By substitution of R = in inequality

s < uR+ (3\/— - Qu) yuE [2, ST\/gJ we obtain

A — 4r2?

e +(3\/§~2u)r — 16rs§/¢A+(48\/§¥36u)r2 —

12 (4v/3 — 3p)
7

s<

16
1. ars—pAr? < A, where o := I and 8 :=

2v3+3 4 3V3
3 V3 2

2. 8rs—-12(2v3-3)r2 <A,

3.16 (23— 3) sr —36 (2 - v3) 12 < A,

4. 4V3rs< A < (HF)

32v/3
9

we obtain respectively:

In particular, if y4 = 2,

5. rs +4r2 < A.

Since s > 3+/3r then ars — 8r2 = + 36r? is decreasing in

167 (s — 3\/?—>r)
L
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3v3
e [2, i} and, therefore, u = 2 give us the best (r,s)-quadratic minorants for A

2
6. 8rs—12(2v3-3)r2<A
that is
16 12 (4v3 -3 3v3
;s _ (438 <8rs—12(2v3-3)r2 <A, pe {27‘/—} :
I
2v/3+3 4 3v3
In particular, since 2 < ﬁ—— <—=< i we have the chain of inequalities:

3 /3 2
rs+4r? < 4y/3rs < 16 (23 — 3) sr — 36 (2 — V3) 2 <
8rs —12(2v3-3)r2 < A.
(Inequality (6) can be considered as refinement of Hadwiger-Finsler Inequality in

the (A, r,s)- form and it is analogous to the Blundon’s Inequality which give the
best linear (R, r) majorant to s).

32+/3
9

3.3. Linear (r,s)-majorant for sum of medians.

Lemma 2. Let m, and m; be medians of a triangle with side-lengths a, b, c. Then

2¢2 +ab

MeMmyp < 1

2(b2+cz)—a2 5 2(02+a2)—b2

2 —
amb-

Proof. Since m

a” 4 4
2 2
then 16 (@) - mgmg> = (2082 + ) — a?) (2 (c2+a?) - %) —

(2c2+ab)2:2((a2—b2)2—c2(a-b)2) =2(a—b)2(a+b+c)(a+b=-c)>0.

16s% — 3A
Corollary 3. (mq +mp +me)® < 8—4‘

Proof. Since
22 +ab  2(a®+b*+c%) +ab+bc+ca

MaMp + MpMe + MeMg < 3 = and for any
e 4 4

k and [ holds

. . 2,32, 2 2 (k-DA

identity k (a® + b* + ¢*) 4+l (ab + bc + ca) = (I + 2k) s> — ~——2— then

. 3
(Mg +mp+me)? = mZ +m? +m?2+2(mgmyp + mpme + mem,) = 1 (a® + 6%+ %) +
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7(a® +8*+¢*) +2(ab+bctca) 1652 — 3A
4 4

2 (mgmp + mpme + memy) <

Theorem 5. Let m,, mp, m. be medians of a triangle with semipermineter s and
inradius r. Then

(M) Ma +mp+me < 2s—3(2v/3 = 3)r. 8]
. V1652 — 3A
Proof. By Corollary 3.3.1. we have mgy + mp + m, < —682— and using
16 12 (4v/3 -3
inequality ars — 8r2 < A, where a:= — and 8 := L—H—) we obtain:

. 7 7
16s% — 3A < 16s% — 3 (asr — Ar?) = 165 — 3asr + 36r2. Therefore,
1
Me + Mmp +me < 5\/1632 — 3asr + 35r2.Since

3ar)” 2
1652 — 3asr + 3672 = (45 - ﬂ) + 312 ([3 — §a_) then

8 64
16s? — 3asr + 3872 becomes a perfect square if and only if
3a? 12 (4v/3-3u) 3 256 1
= = = — . &= 43 -3u=~
P=%1 7 64 12 V3 —3p i
2v/3 2 3
32 —4VBu+1=0 — ,u:—\/%. For p = ﬂ we have
1 3
a=16(2v3-3),3 (43 - %) = 23—%‘16 (2v3—3)r =25—3(2V3 — 3) r and,
therefore,
Ma + My + My §23—3<2\/?_>—3)r.
2v/3+3
Thus, only u = i3—+— provide the linear (s,7) —majorant for sum of medians.

Inequality (M), when it already established, can be proven by a shorter way:

Since ab+bc+ca =5 +r(4R+r) and a® + b2+ 2 =2 (s2 —r (4R +)) then
T(a®+b% +c?) +2(ab+be+ca

(Ma +mp +me)’ < ( )4 ( ) _

14 (2 —r(4R+ 1)) + 2 (s + 7 (4R + 1))
4

suffices to prove 4s% — 3r2 — 12Rr < (25 — 3 (2v/3 - 3) 7‘)2 .

= 4s% — 3r2 — 12Rr and, therefore, it

Since s < %gR we have(2s — 3 (2/3 — 3) 7‘)2 — (452 = 3r? — 12Rr) =

12r (R-s(2v/3-3) —r(9v3-16)) >
3v3
—2‘—/:1%- (2v3 -3) —r(9\/§—16)) =6(9v3—16)r (R~ 2r) > 0.
(Inequality (M) as a conjecture was proposed by Konstantin Knop in private
communication). '

12r (R —
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4 More inequalities with A

In conclusion, we will consider a few inequalities with A. First we will present a
chain of inequalities with A (some of them are already well known).
Inequality 1.
Let a,b,c be lengths of sides of a triangle. Then
9a2b%c? 3abc(a +b+c) < 8abc (ab + be + ca)
a?b? +02c2 +c2a® © a2 40242 T 7 (a+b)(b+c)(c+a) ~

9abc <min{3abc(a+b+c),gm}.

a+b+c — ab+be + ca

Proof. Since a, b, c are positive, we have

*%_Sk?m <= 3Vabc<a+b+cand
a C

9abc < 3abc(a+ b+ c)

a+b+c ™ ab+bc+ca
8abc (ab + bc + ca) < 9abe

(a+b)(b+c)(ct+a) “a+b+c

9(a+0b)(b+c)(c+a)

(as a side note: all of these inequalities hold for any positive a, b, ).

So it remains to prove:

<= 3(ab+bc+ca) < (a+b+c)? and

< 8(a+b+c)(ab+bc+ca) <

3abc{a+b+c) 8abc (ab + be + ca)

—_— - <AL
2+ +E T TGt rolcta)
0 9a2b%c? 3abc(a + b+ c)
: a?b2 + b2¢2 + c2q2 — a2 + b2 + 2

3abc (a,2 +5% 4+ cz) <(a+b+c) (a2b2 +b%2c2 + c2a2) .

Proof. (Inequalities (1) and (2)).
Using free parametrization of the triangle namely,(a,b,c) =
(+z,z+z,z+y),
denoting p := zy + yz + 2z, ¢ :=
zyz, and due to homogeneity of the inequalities, assuming z +y + z = 1,we
obtain s =1,A =4dp,abc=p—q,a®+b>+c? = 2(1 — p), a®b® + b2c% + 22 =
(1-p)*+4q, (a+b)(b+c)(c+a) =2 +p+ q and inequalities (1) and (2)
becomes, respectively,
3(p— - 1
(p-4q <ap< 8-00+p
1-p "2+p+g

3p-9)(1-p) < (1-p)°+4g < (T-3p)g— (dp—1)(1-p) >0.

First, lets prove inequality

3(p—-9q 3(p—9q)
1-p

-7 <4dp <= 3q¢+p—4p® > 0. Since p=xzy+yz+

<dp =
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2
z 1
Cry+s) 14y r(E—y)(t—-2)>0 < ¢2>
3 3 cyclic

1 dp—-17 1
0<p§§,q2max{0, P }.For0<p§2wehave

then

dp —1
<
zx < 5

1 1
3q+p~4p22p(1—4p)ZOandforZ<p§§wehave

4p—1 4p-1)(1-3
3q+p—4p22—p3 +p~4p2:(p )3( p)zo.»

Now, lets prove
8(p—q)(1+ 2p—-q) (1 +
(P—a)( p) < (p—a)( p) 2

inequality 4p <
4 v P s 2+p+gq b= 2+10+q2
) .

p+2)q > 0.Since g = zyz (z +y 4 2) < ZYFYEHeR)T PR
(3 2)q > 0.S yz ( ) ( 3 3

2

p 1
p2—(3p+2)q2p2—(3p+2)3=§p2(1—3p)20.

Thus, it remains to prove inequality (7 — 3p)g — (4p — 1) (1 — p) > 0.

Note that ¢ > max {0, MM}} since Y z¥(z—y)(z—2)>

6 cyclic
0 << qzw.l%r0<p_<_lwe
have(7—3p)q—(4p—1)(1—1p)=(71—3p)q+(1—4p)(1—p) >
(1—4p)(1 —p) >0 and forZ<psgwehave (7T-3p)g—(4p—1)(1—p) >

(1-p)(1-3p)(4p—1)
6

(-3 LR EP D gy - >0

6

Remark 4. In reality, inequality A < 3v/a2b2c? holds for any real a,b,c and it is
A— form (up to replacement (a,b,c) with (z3,y3,2%)) of well known

[5],[6] inequality

(@3 +y2 + z3)2 +3(zyz)’ >4 (z3y® + y32% + 232%) , where z,y,z € R.

Inequality 2.Let a,b,c be lengths of sides of a triangle. Then for any real positive
z,Y, 2z holds inequality:

zbe yca zbe A

1. > —;
(&) y+z+z+m+x+y_ 2’
za? yb? zc? A
b > —.

(b) y+z+z+x+m+y_2

Remark 5. Inequality (a) is a geometric version of algebraic inequality,
proved by M.S.Klamkin for any positive a,b, c,z,y,z and presented as
Inequality 1 in [1], p.33 without proof and with reference to original

article. Inequality in (b) is also a geometric version of algebraic
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inequality proved by D.S.Mitrinovic,J.E. Pecaric for any positive
a,b,c and real z,y,z such thatx +y,y+ 2,2+ > 0 and presented as
Inequalities 6 and 10 in [1], p.34 with easy proof.

T A
So, ill ly the i lit in the fi > )
0, we will prove only the inequality (a) in the form C%c a7 = Tabe

Proof. Applying Cauchy Inequality to

triples ad i z and
Var(y+2) bz (2 +z) ez (z +y)

(\/az (¥ +2),Vbz (2 + 2), ez (z + y)) we obtain -

os(y+2) £ P2 @ry+a) e 5Ly Erure)
cycawy i cl,crzulu(g,l+—.:,*)_ac yr=z wea(y+2) = Yax(y+2z)

(z+y+2)° S 4 (ab + bc + ca) "
Yar(y+z) (@+b)(b+c)(c+a)

cyc
8 (ab + bc + ca) abe z S A

> A tai .
@+5)(b+c)(cta) = 2 Weobtain ) Zmm—s > oo

Since

(inequality (D), [4]) and

Inequality 3. Let a,b,and c be lengths of sides of a triangle ABC and P be any
point in the triangle. Let d,,ds,d, be distances from point P to sides
a,b, ¢ respectively. Then

4F? A (a2,b2,62)
d c e £ ——=——7+—1~,
odp + dpd, + d.d A 4A(a,b,c)

Proof. Since ad, + bdy + ¢d. = 2F then by replacing (x,y,z) and (o, 8,7) in
aBy (T +y+2)°
A(a, B,7)

(ada, bdy, cd.) and (a,b,c), respectively, we obtain

Remark 6. This inequality was proven in [4],p.460 as inequality (DP) and

originally represented as mazimization problem and since

ddody + dpdc + dedy = A (dg + dy, dp + do, d, + d,) it can be rewritten as
A(de +dp,dp + de,dc + dg ) A(a,b,¢) < A (a?,6%,c?).

inequality ayz + Bzx + yzy < (inequality (C), [4] ) with

Inequality 4. Let a,b, c be sidelengths of an acute triangle with circumradius R,

8rsv/3 + 4s?
inradius r and semiperimeter s.Then A < —Q—

(This inequality is A-r-s representation of inequality in Theorem 1.4 in [3]).
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